write.as

FilogosofiaFilosofia della matematica Filosofia della matematica dall'essere crea là Leibnitz. Infinitamente crea infinitameventità infinitesimessere d'esserne fenoumenontologòdelhòlex infinitameventholex senzaperché è infinitesimalex È EventonTologia infinitesimix In Filosofia della matematica è senzaperché fenoumenontology è senzaperché essere-infinitamenteventontologia essereventontopologia infinitontopologia infinitesimaleventontologia infinitontology essereventontology infinitamenteventontology è senzaPerché spaziotempontology fenoumenontologia eventua infinitameventontopologia infinitamenteventontology katatokreontology poetanteventontology essere crea la metafondazione della scienza matematica katastrofenoumenontology matematiche di tutti i fenomeni, una seconda proprietà fondamentale e intrinseca, forse importante come il primo, è l'estrema genericità delle formule differenziali, che esprimono in una singola equazione ogni fenomeno determinato, tuttavia variato i soggetti in relazione ai quali è considerato. Così vediamo, negli esempi precedenti, che una singola equazione differenziale dà tangenti di tutte le curve, un altro loro rettifiche, un terzo loro quadrature; e allo stesso modo, una formula invariabile esprime la legge matematica di ogni moto vario; e, infine, una singola equazione rappresenta costantemente la distribuzione del calore in qualsiasi organismo e per ogni caso. Questa generalità, che è così estremamente notevole, e che è per geometri base delle considerazioni più elevati, è una conseguenza fortunata e necessaria del lo spirito di analisi trascendente, soprattutto nella concezione di Leibnitz. Così l'analisi infinitesimale non solo ha fornito un metodo generale per formare indirettamente equazioni che sarebbe stato impossibile scoprire in modo diretto, ma ci ha anche permesso di considerare, per Q lo studio matematico dei fenomeni naturali, un nuovo ordine di leggi più generali, ma che comportano un significato chiaro e preciso per ogni mente abituata alla loro interpretazione. In virtù di questa seconda proprietà caratteristica, l'intero sistema di una scienza immensa, come geometria o meccanica, è stato condensato in un piccolo numero di formule analitiche, da cui la mente umana può dedurre da certe e invariabili regole, la soluzione di tutti i problemi particolari. Dimostrazione della il metodo. Per completare l'esposizione generale della concezione di Leibnitz, rimane da considerare la dimostrazione della procedura logica a cui conduce, * 'e questo, purtroppo, è la parte più imperfetta di questa bella metodo. All'inizio del dell'analisi infinitesimale, i geometri più celebri giustamente attaccati più importanza di estendere la scoperta immortale di Leibnitz e moltiplicando le sue applicazioni che per stabilire con rigore le basi logiche delle sue operazioni. Essi si accontentarono per lungo tempo rispondendo alle obiezioni dei geometri di secondo piano dalla soluzione insperata dei problemi più difficili; senza dubbio convinto che nella scienza matematica, molto più che in ogni altro, possiamo coraggiosamente il benvenuto a nuovi metodi, anche quando la loro spiegazione razionale è imperfetta, a condizione che siano fecondi nei risultati, nella misura in cui le sue verifiche molto più facile e più numerosi, non permetterebbero alcun errore a rimanere a lungo da scoprire. Ma questo stato di cose non poteva lunga esiste, ed è stato necessario tornare ai fondamenti di analisi di Leibnitz, al fine di dimostrare, in modo perfettamente generale, la rigorosa esattezza delle procedure impiegate in questo modo, a dispetto delle infrazioni apparenti delle regole ordinarie del ragionamento che esso consentito. Leibnitz, sollecitato a rispondere, aveva presentato una spiegazione del tutto erronea, dicendo che ha trattato infinitamente piccole quantità come incomparabili, e che li trascurata in confronto con quantità finite, "come granelli di sabbia in confronto con il mare:" una vista che avrebbe hanno completamente cambiato la natura della sua analisi, riducendolo a mero calcolo approssimativo, che, sotto questo punto di vista, sarebbe radicalmente vizioso, poiché sarebbe impossibile prevedere, in generale, in che misura le operazioni successive potrebbero aumentare questi primi errori, che potrebbero in tal modo, evidentemente, raggiungere qualsiasi importo. Leibnitz, poi, non ha visto, se non in modo molto confuso, i veri fondamenti logici di analisi, che aveva creato. I suoi primi successori si sono limitati, in un primo momento, a verificare l'esattezza mostrando la conformità dei suoi risultati, in applicazioni particolari, a quelli ottenuti con l'algebra ordinaria o la geometria di antichi; riproducendo, secondo i metodi antichi, per quanto potevano, le soluzioni di alcuni problemi dopo che era stato una volta ottenuto con il nuovo metodo, che sola era capace di loro scoprendo in primo luogo. Quando questa grande questione è stato considerato in modo più generale, geometri, invece di attaccare direttamente la difficoltà, preferito sfuggire in qualche modo, come Eulero e D'Alembert, per esempio, hanno fatto, dimostrando la conformità necessaria e costante di la concezione di Leibnitz, visto in tutte le sue applicazioni, con altre concezioni fondamentali di analisi trascendente, che di Newton in particolare, l'esattezza di che era libero da ogni obiezione. Tale veri generale «Indietro Continua» Giacinto Gli Utenti Che utilizzano screen reader tariffa possono clic collegamento this do per Attivare la Modalità di accessibilità. This Modalità Presenta le stesse FUNZIONI Principali, ma risulta maggiormente compatibile con il lettore. Libri Filosofia della matematica Leggi eBook TROVA this libro Nella versione stampata AbeBooks.it TROVA in biblioteca Una Tutti i venditori » copertina anteriore 1 Recensione Modifica Recensione Filosofia della matematica Di Auguste Comte Informazioni su this libro Termini di Servizio Immagini della pagina PDF ePub la caratteristica L stato impiegato per designare il limite. Il calcolo di funzioni indirette mostrerà come dedurre da questa formula in ogni caso particolare, quando l'equazione di è dato curva, la relazione tra t e x, eliminando le quantità ausiliari che sono state introdotte. Se supponiamo, al fine di completare la soluzione, che l'equazione della curva proposto è y = ax 2 , avremo evidentemente Ay = 2axAx + a (& x) 9 , da cui otterremo - = + 2AX AAX. ASCIA Ora è chiaro che il limite verso cui il secondo numero tende, in proporzione Ax diminuisce, è permissive. Possiamo quindi troveremo, con questo metodo, t = 2ax, come abbiamo ottenuto per lo stesso caso con il metodo di Leibnitz. 2. . Rettifiche In modo simile, quando la rettifica di una curva si desidera, si deve sostituire l'incremento della dell'arco s corda di questo incremento, che ha evidentemente una tale connessione con esso che il limite del loro rapporto è unità; e poi troviamo (perseguendo per altri aspetti lo stesso piano come con il metodo di Leibnitz) questa equazione generale di rettifiche: \ AX / \ AX / \ AX / \ AXJ \ AX / secondo che la curva è aereo o di doppia curvatura. Ora sarà necessario, per ogni curva particolare, per passare da questa equazione a quella tra l'arco e l'ascissa, che dipende dal calcolo trascendente propriamente detta. Potremmo riprendere, con la stessa facilità, con il metodo di limiti, tutte le altre questioni generali, la soluzione di cui si è già indicati secondo il metodo infinitesimale. Tale è, in sostanza, il concetto che Newton formata per l'analisi trascendente, o, più precisamente, ciò che Maclaurin e D'Alembert hanno presentato come la base più razionale di tale analisi, nel cercare di fissare e di provvedere le idee di Newton su quel soggetto. Flussioni e fluenti. Un'altra forma precisa, sotto il quale Newton ha presentato questo stesso metodo dovrebbe essere qui notato, e merita particolare a fissare la nostra attenzione, tanto per la sua chiarezza ingegnoso, in alcuni casi, come per il suo aver fornito la notazione più adatto a questo modo di la visualizzazione l'analisi trascendente, e, inoltre, per essere stato fino a poco la forma speciale di la calcuius di funzioni indiretti comunemente adottata dai geometri inglesi. Mi riferisco al calcolo delle flussioni e di fluenti, fondata sull'idea generale di velocità. Per facilitare la concezione del l'idea fondamentale ', consideriamo ogni curva come generato da un punto colpito con un movimento variabile secondo una legge qualsiasi. I diversi quantitativi che la curva può presentare, l'ascissa, l'ordinata, l'arco, la zona, ecc, saranno considerati come simultaneamente prodotta per gradi successivi nel corso di questo movimento. La velocità con cui ciascuna sono state descritte sarà chiamato fluxion di tale quantitativo, che sarà inversamente chiamato sua influenza ent. D'ora in poi l'analisi trascendente consisterà, secondo questa concezione, nel formare direttamente equazioni tra le flussioni della proposta quantità, per dedurne, da un calcolo speciale, le equazioni tra i fluents stessi. Quanto detto rispettando curve può inoltre evidentemente essere applicato a qualsiasi grandezze qualunque, considerati, con l'aiuto di immagini adatte, come prodotta dal movimento. È facile comprendere l'identità generale e necessaria di questo metodo con quello di limiti complicate con l'idea estera del movimento. Infatti, riprendendo il caso della curva, se supponiamo, come abbiamo evidentemente sempre può, che il moto del punto descrivere è uniforme in una certa direzione, che delle ascisse, per esempio, allora il flux Giacinto Gli Utenti Che utilizzano screen reader tariffa possono clic collegamento this do per Attivare la Modalità di accessibilità. This Modalità Presenta le stesse FUNZIONI Principali, ma risulta maggiormente compatibile con il lettore. Libri Filosofia della matematica Leggi eBook TROVA this libro Nella versione stampata AbeBooks.it TROVA in biblioteca Una Tutti i venditori » copertina anteriore 1 Recensione Modifica Recensione Filosofia della matematica Di Auguste Comte Informazioni su this libro Termini di Servizio Immagini della pagina PDF ePub ragionamento, deve essere fondata sulla sola osservazione, e che costituiscono la base necessaria di tutte le deduzioni. La superiorità scientifica della geometria deriva dai fenomeni che ritiene essere necessariamente la più universale e il più semplice di tutti. Non solo possono tutti 'i corpi di natura dar luogo a indagini geometriche, così come quelle meccaniche, ma ancora più lontano, fenomeni geometrico esisterebbe ancora, anche se tutte le parti del dell'universo dovrebbero essere considerati come beni. La geometria è quindi, per sua natura, più generale meccanica. Allo stesso tempo, i suoi fenomeni sono più semplici, perché sono evidentemente indipendenti di fenomeni meccanici, mentre questi ultimi sono sempre complicato con i primi. Le stesse relazioni valgono nel confronto con la geometria termologia astratto. Per queste ragioni, nella nostra classificazione mettiamo geometria prima parte del calcestruzzo matematica ; quella parte dello studio di cui, oltre alla sua propria importanza, serve come base indispensabile di tutto il resto. Prima di considerare direttamente lo studio filosofico di diversi ordini di richieste che costituiscono la nostra geometria attuale, dovremmo ottenere una idea chiara e precisa della destinazione generale di che la scienza, visto in tutte le sue cuscinetti. Tale è l'oggetto di questo capitolo. . Definizione geometria viene comunemente definito in modo molto vago e del tutto impropria, come la scienza di estensione. Un miglioramento su questo sarebbe dire che la geometria ha per oggetto la misura di estensione; ma una tale spiegazione sarebbe molto insufficiente, anche se, in fondo, corretta, e sarebbe molto da dare qualche idea del vero carattere generale della scienza geometrica. Per fare questo, penso che dovrei prima spiegare due divertenti fon- idee, che, molto semplice in se stessi, sono stati singolarmente oscurate con l'impiego di considerazioni metafisiche. L' idea di spazio. La prima è quella di spazio. Questa concezione consiste propriamente semplicemente nel fatto che, invece di considerare l'estensione nei corpi stessi, l'abbiamo vista in un mezzo indefinito, che noi consideriamo come contenente tutti gli organi della dell'universo . Questa nozione è naturalmente suggerito da osservazione, quando pensiamo di l'impressione che un corpo avrebbe lasciato in un fluido in cui era stato collocato. È evidente, infatti, che, per quanto riguarda le sue relazioni geometriche, tale impressione può essere sostituito per il corpo stesso, senza alterare i ragionamenti rispetto esso. Per quanto riguarda la natura fisica di questo indefinito spazio, siamo spontaneamente portati a rappresentare a noi stessi, ad essere del tutto analogo al mezzo reale in cui viviamo; in modo che se questo mezzo era liquido invece di gassosa, nostro geometrico spazio sarebbe certamente essere concepito come liquida. Questa circostanza è, del resto, solo molto secondario, l'oggetto essenziale di tale concezione essendo solo per farci consideriamo estensione separatamente dai corpi che si manifestano a noi. Possiamo facilmente capire in anticipo l'importanza di questa immagine fondamentale, poiché ci permette di studiare fenomeni geometrico in sé, astrazione essendo fatto di tutti gli altri fenomeni che li accompagnano costantemente in corpi reali, senza howover, esercitare alcuna influenza su di loro. La creazione regolare di questa astrazione generale deve essere considerato come il primo passo che è stato fatto nello studio razionale della geometria, che sarebbe stato impossibile se fosse stato necessario prendere in considerazione, insieme con la forma e la grandezza dei corpi, tutta la loro altre proprietà fisiche. L'uso di una tale ipotesi, che è forse la più antica concezione filosofica creato dalla mente umana, è diventata così familiare a noi, che abbiamo difficoltà esattamente valutare la sua importanza, cercando di apprezzare le conseguenze che deriverebbero dalla sua soppressione. Diversi tipi di estensione. La seconda concezione geometrica preliminare che dobbiamo esaminare è quella di diversi tipi di estensione, designati dalla parole di volume, di superficie, la linea, e anche il punto, e di cui la spiegazione ordinaria è così insoddisfacente. * Anche se è evidentemente impossibile concepire qualsiasi estensione assolutamente priva di una qualsiasi delle tre dimensioni fondamentali, è altrettanto incontestabile che, in un gran numero di volte, anche di utilità immediata, domande geometrici dipendono solo due dimensioni, considerati separatamente dal il terzo, o in una sola dimensione, considerati separatamente dagli altri due. Ancora una volta, indipendentemente di questo motivo diretta, lo studio di estensione con una sola dimensione, e poi con due, si presenta chiaramente come un preliminare indispensabile per facilitare lo studio dei corpi completi di tre dimensioni, la teoria immediata di cui sarebbe troppo com * Lacroix giustamente criticato l'espressione di solido, comunemente usato dai geometri per designare un volume. è certo, infatti, che quando vogliamo considerare separatamente una certa porzione di spazio indefinito, concepito come gassosa, abbiamo mentalmente solidificare il suo involucro esterno, in modo che una linea ed una superficie sono abitualmente, alla nostra mente, proprio come solido come un volume. può anche essere osservato che la maggior parte in genere, in modo che i corpi possono penetrare l'un l'altro con più facilità, siamo obbligati ad immaginare l'interno di i volumi di essere vuota, che rende ancora più sensibile la scorrettezza della parola tolid. complicata. Questi sono i due motivi generali che obbligano geometri considerare separatamente estensione con riferimento ad una o due dimensioni, nonché relativamente a tutti e tre insieme. I concetti generali di superficie e di linea sono stati formati dalla mente umana, in modo che possa essere in grado di pensare, in modo permanente, di estensione in due direzioni, oppure in uno solo. Le espressioni iperboliche abitualmente impiegati da geometri per definire queste nozioni tendono a trasmettere false idee su di loro; ma, ha esaminato in se stessi, non hanno altro scopo che per permetterci di ragionare con facilità rispetto di questi due tipi di estensione, rendendo completa astrazione di ciò che non deve essere preso in considerazione. Ora per questo è sufficiente concepire la dimensione che si vuole eliminare per diventare gradualmente più piccola, gli altri due rimanenti stesso, fino ad arrivare ad un tale grado di tenuity che non può più fissare l'attenzione. È così che abbiamo naturalmente acquisire la vera idea di una superficie, e, da una seconda operazione analoga, l'idea di una linea, ripetendo per ampiezza quanto avevamo dapprima fatto per spessore. Infine, se ancora una volta ripetere la stessa operazione, arriviamo all'idea di un punto, o di una estensione considerato solo con riferimento al suo posto, l'astrazione di essere fatto di tutto grandezza, e di conseguenza progettato per determinare le posizioni. Superfici evidentemente hanno inoltre la proprietà generale di volumi esattamente circoscrivono; e allo stesso modo, linee, a loro volta, circoscrivono superfici e sono limitate da punti. Ma questa considerazione, a cui troppa importanza è dato spesso, è soltanto uno secondario. Superfici e linee sono, quindi, in realtà, sempre concepiti con tre dimensioni; sarebbe, infatti, impossibile rappresentare a se stessi una superficie altrimenti che come una piastra estremamente sottile, e una linea altrimenti che come un filo infinitamente bene. È anche evidente che il grado di tenuity attribuito ogni individuo alle dimensioni dei quali desidera fare astrazione non è sempre identica, perché deve dipendere dal grado di sottigliezza dei suoi abituali osservazioni geometriche. Questa mancanza di uniformità ha, inoltre, non inconveniente reale, in quanto è sufficiente, in modo che le idee di superficie e di linea dovrebbero soddisfare la condizione essenziale della loro destinazione, per ognuno di rappresentare a se stesso le dimensioni che devono essere trascurati come essere più piccolo di tutti coloro la cui grandezza della sua esperienza quotidiana gli dà modo di apprezzare. Noi quindi vediamo come priva di ogni significato sono le fantastiche discussioni dei metafisici sulle fondamenta della geometria. Va anche osservato che queste idee primordiali sono abitualmente presentati dai geometri in maniera non filosofica, poiché, ad esempio, spiegano le nozioni di diversi tipi di misura in un ordine assolutamente l'inverso della loro dipendenza naturale, che produce spesso più gravi inconvenienti in istruzione elementare. L'oggetto finale DI GEOMETRIA. Questi preliminari essendo stabilito, si può procedere direttamente alla definizione generale di geometria, continuando a concepire questa scienza come avente per oggetto finale misura di estensione. E 'necessario in questa materia per andare in un approfondito Giacinto Gli Utenti Che utilizzano screen reader tariffa possono clic collegamento this do per Attivare la Modalità di accessibilità. This Modalità Presenta le stesse FUNZIONI Principali, ma risulta maggiormente compatibile con il lettore. Libri Filosofia della matematica Leggi eBook TROVA this libro Nella versione stampata AbeBooks.it TROVA in biblioteca Una Tutti i venditori » copertina anteriore 1 Recensione Modifica Recensione Filosofia della matematica Di Auguste Comte Informazioni su this libro Termini di Servizio Immagini della pagina PDF ePub spiegazione, fondata sulla distinzione dei tre tipi di estensione, poiché la nozione di misura non è esattamente lo stesso con riferimento a superfici e volumi da linee. Natura del geometrica misura. Se prendiamo la parola misura nella sua diretta e generale accettazione matematica, che significa semplicemente la determinazione del valore di i rapporti fra qualsiasi grandezze omogenee, bisogna considerare, nella geometria, che la misura di superfici e di volumi , a differenza di quello di linee, non è mai concepito, anche in casi più favorevoli più semplice e, come essere effettuata direttamente. Il confronto delle due linee è considerato diretto; che di due superfici o di due volumi è, al contrario, sempre indiretta. Così noi concepiamo che due linee possono essere sovrapposte; ma la sovrapposizione delle due superfici, o, più ancora, di due volumi, è evidentemente impossibile nella maggior parte dei casi; e, anche quando diventa rigorosamente possibile, tale confronto è mai né conveniente o esatta. È, quindi, molto necessario spiegare in cosa consiste correttamente la misura vera geometrica di una superficie o di un volume. Misurazione di superfici e dei volumi. Per questo bisogna considerare che, qualunque sia la forma di un corpo, esiste sempre un certo numero di linee, più o meno facile da assegnare, la lunghezza del quale è sufficiente a definire esattamente grandezza della superficie o del suo volume. Geometria, riguardo queste righe da sola suscettibile di essere misurata direttamente, propone dedurre, dalla semplice determinazione del loro, il rapporto di superficie o di volume cercato, all'unità di superficie, oppure l'unità di volume. Così l'obiettivo generale di geometria, rispetto alle superfici e volumi, è correttamente ridurre tutti i confronti di superfici o di volumi a semplici confronti di linee. Oltre la grandissima facilità che una tale trasformazione offre evidentemente per la misura di volumi e di superfici, ne risulta da esso, in considerazione in modo più esteso e più scientifica, la possibilità generale di ridurre a questioni di linee tutte le questioni relative volumi e superfici, considerate con riferimento alla loro grandezza. Tale è spesso l'uso più importante delle espressioni geometriche che determinano superfici e volumi in funzioni delle linee corrispondenti. È vero che i confronti diretti tra superfici o tra volumi sono talvolta impiegati ; ma tali misurazioni non sono considerati geometrico, ma solo come un supplemento talvolta necessario, anche se troppo raramente applicabile, alla insufficienza o alla difficoltà di metodi veramente razionali. È così che spesso determinare il volume di un corpo, e in alcuni casi la sua superficie, tramite di suo peso. Allo stesso modo, in altre occasioni, quando possiamo sostituire il volume proposto un volume liquido equivalente, si stabilisce direttamente il confronto dei due volumi, approfittando dalla proprietà posseduta da masse liquide, di assumere qualsiasi forma desiderata. Ma tutti i mezzi di questa natura sono puramente meccanico, e la geometria razionale li rifiuta necessariamente. Per rendere più sensibile la differenza tra queste modalità di determinazione e veri misure geometriche, citerò un solo molto notevole esempio; il modo in cui Galileo determinato il rapporto della cicloide ordinaria a quella del cerchio generatore. La geometria del suo tempo era ancora insufficienti per la soluzione razionale di tale problema. Galileo concepì l'idea di scoprire che il rapporto con un esperimento diretta. Avendo pesato come esattamente come possibili due piastre di stesso materiale e di uguale spessore, uno dei quali ha la forma di un cerchio e l'altro che di quello generato cicloide, trovò il peso di quest'ultimo sempre il triplo del precedente; donde dedotto che la zona della cicloide è triplo del cerchio generatore, un risultato accordo con la soluzione vera successivamente ottenuto da Pascal e Wallis. Tale successo dipende evidentemente l'estrema semplicità del rapporto richiesto; e siamo in grado di capire l'insufficienza necessaria di tali espedienti, anche quando sono in realtà praticabile. Vediamo chiaramente da quanto precede, la natura di quella parte della geometria relativa ai volumi e quello relativo alla superficie. Ma il carattere della geometria delle linee non è così evidente, dal momento che, al fine di semplificare l'esposizione, abbiamo considerato la la misurazione di linee come riferimenti direttamente. C'è quindi bisogno di una spiegazione complementare rispetto ad essi. Misurazione di curve linee. Per questo scopo, è sufficiente distinguere tra la linea destra e linee curve, la misurazione del primo essere solo considerato diretto, e che di altra come sempre indiretta. Sebbene sovrapposizione volte è strettamente funzionale per linee curve, è tuttavia evidente che la geometria veramente razionale deve necessariamente respingerla, non ammettendo di tutta la precisione, anche quando è possibile. La geometria delle linee è, quindi, per il suo scopo generale, per ridurre in ogni caso la misura di linee curve a quella di rette; e di conseguenza, nel punto più esteso di vista, per ridurre a semplici domande di linee rette tutte le questioni relative alla grandezza di eventuali curve qualunque. Per comprendere la possibilità di una tale trasformazione, si deve notare che in ogni curva esistono sempre alcune linee rette, la lunghezza della quale deve essere sufficiente a stabilire che della curva. Così, in un cerchio, è evidente che dalla lunghezza del raggio dobbiamo essere in grado di dedurre che della circonferenza; allo stesso modo, la lunghezza di un ellisse dipende da quella dei suoi due assi; la lunghezza di una cicloide dal diametro del la cirole generatrice, ecc; e se, invece di considerare l'intero di ogni curva, chiediamo, più in generale, la lunghezza di ogni arco, sarà sufficiente aggiungere ai diversi parametri rettilinee, che determinano l'intera curva, la corda della dell'arco proposto, o le coordinate delle sue estremità. Per scoprire la relazione che esiste tra la lunghezza di una linea curva e che di linee simili destra, è il problema generale della parte della geometria che riguarda lo studio di linee. Combinando questa considerazione con quelli precedentemente suggerito in termini di volumi e superfici, si può formare una chiara idea della scienza della geometria, concepita in tutte le sue parti, assegnando ad esso, per il suo scopo generale, la riduzione finale dei confronti di tutti i tipi di misura, volumi, superfici, o linee, a semplici confronti di linee rette, gli unici confronti considerati in grado di essere fatto direttamente, e che anzi non potevano essere ridotti a tutti gli altri più facile effetto. Tale concezione, allo stesso tempo, indica chiaramente il carattere vero di geometria, e sembra adatta a mostrare un solo sguardo sua utilità e la sua perfezione. Misurazione di destra Lines. Per completare questa spiegazione fondamentale, devo ancora mostrare come ci può essere, in geometria, una sezione particolare relativa alla linea di destra, che sembra a prima incompatibile con il principio che la misura di questa classe di le linee devono essere sempre considerati come diretta. È così, di fatto, rispetto a quello delle linee curve, e di tutti gli altri oggetti che geometria considera. Ma è evidente che la stima di una linea retta non può essere considerato come diretto se non in quanto l'unità lineare può essere applicato ad esso. Ora questo spesso presenta difficoltà insormontabili, come ho avuto occasione di mostrare, per un altro motivo, nel capitolo introduttivo. Dobbiamo, quindi, effettuare la misurazione della linea di destra proposto dipendono altre misure analoghe capaci di essere effettuati direttamente. Non vi è, quindi, necessariamente un ramo distinto primaria di geometria, esclusivamente dedicato alla linea di destra; il suo scopo è di determinare alcune linee rette da altri per mezzo di rapporti appartenenti alle figure derivanti dalla loro assemblaggio. Questa parte preliminare della geometria, che è quasi impercettibile visualizzazione tutta della scienza, è tuttavia suscettibile di un grande sviluppo. Evidentemente è di particolare importanza, poiché tutte le altre misure geometriche sono indicati quelli di linee rette, e se non sono determinabili, la soluzione di ogni domanda rimarrebbe incompleto. Tale, quindi, sono le varie parti fondamentali di geometria razionale, disposte secondo la loro naturale dipendenza; la geometria delle linee in fase di prima considerato, a cominciare con la linea a destra; allora la geometria del sur * facce, e, infine, che di solidi. Giacinto Gli Utenti Che utilizzano screen reader tariffa possono clic collegamento this do per Attivare la Modalità di accessibilità. This Modalità Presenta le stesse FUNZIONI Principali, ma risulta maggiormente compatibile con il lettore. Libri Filosofia della matematica Leggi eBook TROVA this libro Nella versione stampata AbeBooks.it TROVA in biblioteca Una Tutti i venditori » copertina anteriore 1 Recensione Modifica Recensione Filosofia della matematica Di Auguste Comte Informazioni su this libro Termini di Servizio Immagini della pagina PDF ePub Estensione infinita DI suo campo. Avendo determinato con precisione l'oggetto generale e finale delle indagini geometriche, la MUSL scienza ora essere considerata rispetto al campo abbracciato bj ciascuno dei suoi tre sezioni fondamentali. Così considerata, la geometria è evidentemente suscettibile, per sua natura, di una estensione che è rigorosamente infinita; per la misura di linee, di superfici o di volumi presenta necessariamente come molte domande distinte come si può concepire figure diverse sottoposti a definizioni esatte; e il loro numero è evidentemente infinita. Geometri si sono limitati in un primo momento di prendere in considerazione le figure più semplici che le sono stati forniti direttamente dalla natura, o che sono state dedotte da questi elementi primitivi di meno complicate combinazioni. Ma hanno percepito, poiché Descartes, che, per costituire la scienza nel modo più filosofica, è stato necessario far applicare a tutte le figure immaginabili. Questa geometria astratta sarà quindi inevitabilmente comprendere come casi particolari tutte le diverse figure reali che il mondo esterno potrebbe presentare. Si tratta quindi di un principio fondamentale in geometria veramente razionale di considerare, per quanto possibile, tutte le cifre che può essere r