CosmoPhys

DE

Link to paper: [2003.07355] Early Dark Energy Does Not Restore Cosmological Concordance, by J. Colin Hill, Evan McDonough, Michael W. Toomey, Stephon Alexander

Updates since this was originally posted:

Background

Going back at least several years [1], but increasingly since late-2018 [2-7], there has been growing theoretical interest for the Hubble tension issue that suggests new physics models may be needed for the early universe prior to recombination that do not cause changes to late time cosmology, since that is tightly-constrained [4, 8].

For example, papers [2, 5] propose models for a new form of early dark energy (EDE) present at z ≳ 3000 that then dilutes away, resulting in a reduced sound horizon at decoupling. This results in a larger inferred $H_0$ value from CMB data versus Planck results, thus reducing the disparity between early and late time $H_0$ results.

These EDE proposals for resolving $H_0$ tension were characterized as being somewhere on the spectrum between “most plausible” [3] to “least unlikely” [4].

Read more...

Huterer and Shafer authored this excellent review paper: Dark energy two decades after: Observables, probes, consistency tests [arxiv:1709.01091]. They list 5 primary and 6 other probes for DE in Table 1, with details in section 5 and section 6 of the paper. An image clip of Table 1 is shown below.

From the wikipedia article on cosmic voids: “As the Sachs–Wolfe effect is only significant if the universe is dominated by radiation or dark energy, the existence of voids is significant in providing physical evidence for dark energy.”

Read more...

New developments since this post was originally created:

This is about two recent papers with the premise that H0 tension resolution could come from new physics at early times before recombination.

The first paper, Sounds Discordant: Classical Distance Ladder & ΛCDM-based Determinations of the Cosmological Sound Horizon [arxiv:1811.00537] is based on looking at the tension in terms of the sound horizon rs. They cite several advantages of doing so: (1) “added insensitivity to extreme changes in the cosmology at z < 0.1, since one does not need to extrapolate to z = 0”, (2) “the ΛCDM predictions for the sound horizon are more robust than those for H0”, (3) “as with the inverse distance ladder, this approach clarifies that reconciliation can not be delivered by altering cosmology at z < 1”, (4) “it serves to clarify that the reconciliation of distance ladder, BAO, and CMB observations via a cosmological solution is likely to include a change to the cosmological model in the two decades of scale factor evolution prior to recombination”, and (5) “σ(rs)/rs from CMB data, assuming ΛCDM, is four times smaller than the σ(H0)/H0 from the same data and assumed model.”

Read more...